C12

Connecting f^{\prime} and $f^{\prime \prime}$ with the graph of f

Theorem: First Derivative Test for Local Extrema

The following test applies to a continuous function $f(x)$.
At a critical point c:

1. If f^{\prime} changes sign from positive to negative at c (f^{\prime} is greater than zero for all x smaller than c and f^{\prime} is less than zero for all x greater than c), then f has a local maximum value at c .
2. If f^{\prime} changes sign from negative to positive at $c\left(f^{\prime}\right.$ is less than zero for x less than c and f^{\prime} is greater than zero for x greater than c), then f has a local minimum value at c .
3. If f^{\prime} does not change sign at $c\left(f^{\prime}\right.$ has the same sign on both sides of c), then f has no local extreme value at c .

At a left endpoint a:
If f^{\prime} is less than zero (f^{\prime} greater than zero) for x greater than a, then f has a local maximum (minimum) value at a.

At a right endpoint b:

If f^{\prime} is less than zero (f^{\prime} is greater than zero) for x smaller than b, then f has a local minimum (maximum) value at b.

Example: Use the first derivative test to find the local extrema. Identify any absolute extrema if they exist given a function $f(x)=4 x^{3}-5 x+x$.

CONCAVITY

Definition: The graph of a differentiable function $y=f(x)$ is
a) Concave up on an open interval I if y^{\prime} is increasing on I.
b) Concave down on an open interval I if y^{\prime} is decreasing on I.

Concavity test:

The twice-differentiable function $y=f(x)$ is
a) Concave up on any interval where $y^{\prime \prime}$ is positive.
b) Concave down on any interval where $y^{\prime \prime}$ is negative.

Definition: Point of Inflection

A point where the graph of a function has a tangent line and where the concavity changes is point of inflection.

Theorem: Second Derivative Test for Local Extrema

1. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)$ is negative, then f has a local maximum at $x=c$.
2. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)$ is positive, then f has a local minimum at $x=c$.
