CALCULUS 12

CONNECTING f' and f" TO THE GRAPH OF f

THEOREM: FIRST DERIVATIVE TEST FOR LOCAL EXTREMA

The following test applies to a continuous function f(x).

At a critical point c:

1. If f' changes sign from positive to negative at c (f'>0 for all x<c and f'<0 for all x>c), then f has a local maximum at c.

f' (c) = 0	f' (c) does not exist		
f) o f'<0	f'>0 / f'<0		

2. If f' changes sign from negative to positive at c (f'< cfor all x<c and f'> 0 for all x>c), then f has a local minimum at c.

f' (c) = 0	f' (c) does not exist		
	120 1/20		
€0	⊕ ⊕		

3. If f' does not change sign at c (f' has the same sign on both sides of c), then f has no local extreme value at c.

f' (c) = 0	f' (c) does not exist
1 f'(c) = 0	£\$0
f'co \$ f'co	
- C	p'>0 point of infliction
point of inflection	p'>0 c point of infliction

At the left endpoint a: if f'<0 (f'>0) for all x>a, then f has a local maximum (minimum) value at a.

f' (q) = 0	f' (q) does not exist
a	a

At the right endpoint b: if f'<0 (f'>0) for all x< b, then f has a local minimum (maximum) value at b.

f' (b) = 0	f' (b) does not exist	
200) max	

Example: Use the first derivative test to identify all local extrema of $y = -x^3 + 12x - 5$

Note: y is a polynomial function that is continuous and differentiable on its entire domain. So the only critical points are those where y has a horizontal tangent.

Step 1:Find dy/dx and the points where it is zero. = CY i hical so into

Step 2: Use these points to split a number line into intervals. Within each interval identify whether the dy/dx is positive or negative.

Step 3: Identify whether the critical points yield a local maximum or minimum.

1 = 1 2

tep 4. Sketch the graph of y to check your work.

$$y = -3 x^{2} + 12$$

$$-0 = -3 x^{2} + 12$$

$$-12 = -3 x^{2}$$

$$x^{2} = 4$$

$$x^{3} = 4$$

$$x^{4} = 4$$

$$(-3) = -2(-1)^{2} + 12$$
 $(-3) = 12$ $(-3) = -27 + 12 \cdot -15$

CONCAVITY

DEFINTION: CONCAVITY

The graph of a differentiable function y = f(x) is

- 1. Concave up on an open interval I if pt is increasing on I.
- 2. Concave down on an open interval I if y is decreasing on i.

Examples:

Moun

Concavity Test: The graph of a twice-differentiable function y = f(x) is

- 1. concave up on any interval where y" > 0
- 2. concave down on any interval where y'' < 0

Example: Identify intervals on which $y = 2x^3 - x^2 - 5x$ is concave up and concave down.

$$y' = 6x^2 - 2x - 5$$

 $y'' = 12x - 2$

POINTS OF INFLECTION

DEFINITION: a point where the graph of a function has a tangent line and where the concavity changes, is a point of inflection.

- A point of inflection can be either at the point where the second derivative zero or at the point where the second derivative does not exist.
- Not all points that have a zero second derivative are inflection points.
- An inflection point implies the change in the sign of the second derivative.

Examples:

-8115

 $-5x^{5}-8x^{2}-1$ $-15x^{2}-16x$ -30x-16

Inflection point

Live Concavery to down · CON cove up: 4">0

-30x-16>2 16 -- 8/15

e conome down: y'20 -30x-1642-8/5

SECOND DERIVATIVE TEST FOR LOCAL EXTREMA

1. If f'(c) = 0 and f''(c) < 0, then f has a local maximum at x = c.

S

2. If f'(c) = 0 and f''(c) > 0, then f has a local minimum at x = c.

C

Note: this test fails if f''(c) = 0 or when f''(c) fails to exists and the first derivative test must be used instead.

 $\int_{1}^{1}(x) = \frac{3}{4} \cdot \frac{3}{4} - \frac{18}{4} \times \frac{15}{4} = \frac{18}{4} \cdot \frac{18}{4} = \frac{18}{4} = \frac{18}{4} \cdot \frac{18}{4} = \frac{18}{4$

10	Copy the chart from p 213:		
		•	
	THE	=	X 8

		* * * * * * * * * * * * * * * * * * * *