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CONNECTING f and " TO THE GRAPH OF f

maximum at c.

THEOREM: FIRST DERIVATIVE TEST FOR (DCAUEXTRERAY

L

The following test applies to a continuous function f{x).

1. If ¥ changes sign from positive to negative at ¢ (f">0 for all x<c and f'<0 for all x>c), then f has a local

f {c)=0

' (¢} does not exist
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minimum at c.

2.1f  changes sign from negative to positive at ¢ (f'< cfor all x<c and "> 0 for all x>c), then f has a local

f{c)=0

f (c) does not exist
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3.1f ¥ does not change sign atc (f' has the same sign on both sides of ¢), then f has no local extreme
value at c.
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5 At the left endpoint a: if <0 (f’>0) for all x> a, then fhas a local maximum {minimum} value at a.

flq=0

' (a) does not exist
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5  Atthe right endpoint b : if f'<0 (>0} for all x< b, then f has a local minimum (maximum) value at b,

f{p)=0

f {b) does not exist

-

]

LW Sl

gxample: Use the first derivative test to identify all local extrema of y = -X¥12x-5
Note: y is 2 polynomial function that is continuous and differentiable on its entire domain. So the only critical points are those where

y has a horizontal tangent.

step 1:Find dy/dx and the points where it is zero. = cri “'! e N
Step 2: Use these points to split a number line into intervals. Within eac

sy

step 3: Identify whether the critical points yield a local maximum or minimum.

step 4. Sketch the graph of y to check your work,
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h interval identify whether the/ /X ié positive or negative.
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(\ DEFINTION: CONCAVITY

The graph of a differentiable function y = f(x) is

1.CEAEAVEUP on an open interval | if ghisiMErEAsMEOME ./
Z.m'nn an open interval | IS d8Ereasing on |. ,-\

Examples:

1. concave up on any interval wherey” >0
' 2. concave down on any interval where y”’ <0
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Example: Identify intervals on which y = 2x*-x’ - 5x is concave up and concave down.
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POINTS OF INFLECTION
'bEFINIT|ON' & point where the graph of a function has a tangent line and where the concavity changes, is a point of
inflection.”

e A pointof inflection can be either at the point where the second derivative zero or at the point where the

second derivative does not exist.
e Not all points that have a zero second derivative are inflection points.
e An inflection point implies the change in the sign of the second derivative.
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SECOND DERIVATIVE TEST FOR LOCAL EXTREMA

1.1 f(c) = 0 and f”{c)< O, then f has a local maximumat x = c. &{

C
2. If #(c) = 0 and f”(c)> 0, then f has a local minimum atx =c. /\ \ )
Note: this test fails if f’(c) = 0 or when *(c) fails to exists and the first derivative test must be used
instead.
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Copy the chart fromp 213:
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